Examining The Effectiveness Of 3D Printing For Drone Construction

- Sep 07, 2018-

Drones are becoming more and more a part of modern life, being used for everything from military applications to delivering pizza, not to mention the growing number of hobbyists using them personally. Drones have come of age, so to speak, alongside 3D printing, and therefore 3D printing is commonly used to construct drones, also known as unmanned aerial vehicles or UAVs. In a paper entitled “Implementation of FDM technology in MALE UAVs,” a group of researchers discuss the advantages of using 3D printing for drone manufacture.

MALE stands for Medium Altitude Long Endurance. According to the researchers, there are numerous advantages of using 3D printing over other methods of fabrication. Using PLA makes UAVs more eco-friendly, for one thing, and also improves their strength to weight ratio. 3D printing allows designers to densify certain areas, such as the landing gear or nose tip, that will experience greater impact, while compensating by reducing weight elsewhere. The technology also makes it easier to create an aerodynamic design, and saves time, money and effort compared to other manufacturing methods.

In the study, the researchers developed a 3D printed drone fuselage, which is described as the “backbone” of the drone. It serves as a housing for payload as well as many other components, so there are several weight, aerodynamic and structural constraints that have to be considered in its design. The length of the fuselage also affects the stability of the drone, and it is important to streamline the body so that air can flow around it in such a way as to keep the drag effects low.

The researchers 3D printed several iterations of the drone before arriving at the final version, which was “aerodynamically stable as well as mechanically robust.” Stress analysis was performed using FEA simulations through an ANSYS tool. They analyzed both nose impact and belly impact.

The researchers conclude that FDM 3D printing technology is an effective way of constructing drones, with excellent build precision and high strength to weight ratio. It allows varied material composition on different parts of the drone, and is overall simple, cost-effective and time-saving.

Drone Construction

Previous:Could AI Robots Develop Prejudice On Their Own? Next:NASA Studying Antibacterial 3D Printing Filament For Use On Space Missions